Bài viết dưới đây chúng ta sẽ cùng tìm hiểu nội dung Hàm Số Bậc Hai – Toán 10 và giải một số bài tập liên quan đến nội dung này để nắm chắc kiến thức nhé!
I. LÍ THUYẾT TRỌNG TÂM
Hàm số bậc hai được cho bởi công thức
y = ax2 + bx + c (a ≠ 0).
Tập xác định của hàm số này là D = R
A. ĐỒ THỊ CỦA HÀM SỐ BẬC HAI
Đồ thị của hàm số y = ax2 + bx + c (a ≠ 0) là một đường parabol có đỉnh là điểm I , có trục đối xứng là đường thẳng Parabol này quay bề lõm lên trên nếu a > 0, xuống dưới nếu a < 0.
Cách vẽ
Để vẽ parabol y = ax2 + bx + c (a≠0) ta thực hiện các bước
1) Xác định tọa độ của đỉnh I
2) Vẽ trục đối xứng
3) Xác định tọa độ các giao điểm của parabol với trục tung (điểm (0; c)) và trục hoành (nếu có).
Xác định thêm một số điểm thuộc đồ thị, chẳng hạn điểm đối xứng với điểm (0; c) qua trục đối xứng của parabol, để vẽ đồ thị chính xác hơn.
4) Vẽ parabol.
Khi vẽ parabol cần chú ý đến dấu của hệ số a (a > 0 bề lõm quay lên trên, a < 0 bề lõm quay xuống dưới).
B. CHIỀU BIẾN THIÊN CỦA HÀM SỐ BẬC HAI
Dựa vào đồ thị hàm số y = ax2 + bx + c (a≠0) ta có bảng biến thiên của nó trong hai trường hợp a > 0 và a < 0 như sau
Từ đó, ta có định lí dưới đây
Định lí
Nếu a < 0 thì hàm số y = ax2 + bx + c nghịch biến trên khoảng ; đồng biến trên khoảng
Nếu a > 0 thì hàm số y = ax2 + bx + c đồng biến trên khoảng nghịch biến trên khoảng
II. PHƯƠNG PHÁP GIẢI BÀI TẬP
Dạng 1: Xác định Hàm số bậc hai
Để xác định hàm số bậc hai ta là như sau
Gọi hàm số cần tìm là y = ax2 + bx + c, a ≠ 0. Căn cứ theo giả thiết bài toán để thiết lập và giải hệ phương trình với ẩn a, b, c từ đó suy ra hàm số cần tìm.
Dạng 2: Xét sự biến thiên và vẽ đồ thị hàm số bậc hai
Dựa vào phần lý thuyết đã nêu ở Lý thuyết trọng tâm.
Dạng 3: Đồ thị hàm số chứa dấu giá trị tuyệt đối và cho bởi nhiều công thức
Dựa vào phần lý thuyết đã nêu ở Lý thuyết trọng tâm.
Dạng 4: Ứng dụng của hàm số bậc hai trong chứng minh bất đẳng thức và tìm giá trị nhỏ nhất, lớn nhất
Dựa vào đồ thị (bảng biến thiên) của hàm số y = ax2 + bx + c, a ≠ 0 ta thấy nó đạt giá trị lớn nhất, nhỏ nhất trên [α; β] tại điểm x = α hoặc x = β hoặc x = -b/(2a).
III. GIẢI BÀI TẬP SÁCH GIÁO KHOA
Bài 1 (trang 49 SGK Đại số 10):
Lời giải:
a) y = x2 – 3x + 2 có a = 1 ; b = –3 ; c = 2 ; Δ = b2 – 4ac = (–3)2 – 4.2.1 = 1.
+ Đỉnh của Parabol là
+ Khi x = 0 thì y = 2. Vậy giao điểm với trục tung là A(0 ; 2).
+ Khi y = 0 thì x2 – 3x + 2 = 0. Phương trình có hai nghiệm x = 2 hoặc x = 1.
Vậy giao điểm với trục hoành là B(2 ; 0) và C(1 ; 0).
b) y = –2x2 + 4x – 3 có a = –2 ; b = 4 ; c = –3 ; Δ= b2 – 4ac = 42 – 4.( –3).( –2) = –8
+ Đỉnh của Parabol là (1 ; –1).
+ Khi x = 0 thì y = –3. Vậy giao điểm với trục tung là A(0 ; –3).
+ Khi y = 0 thì –2x2 + 4x – 3 = 0. Phương trình vô nghiệm.
Vậy Parabol không cắt trục hoành.
c) y = x2 – 2x có a = 1 ; b = –2 ; c = 0 ; Δ= b2 – 4ac = 4.
+ Đỉnh của Parabol là (1 ; –1).
+ Khi x = 0 thì y = 0. Vậy giao điểm với trục tung là O(0 ; 0).
+ Khi y = 0 thì x2 – 2x = 0. Phương trình có hai nghiệm x = 0 hoặc x = 2.
Vậy Parabol cắt trục hoành tại hai điểm O(0 ; 0) và A(2 ; 0).
d) y = –x2 + 4 có a = –1 ; b = 0 ; c = 4 ; Δ= b2 – 4ac = 0 – 4.( –1).4 = 16.
+ Đỉnh của Parabol là (0 ; 4).
+ Khi x = 0 thì y = 4. Vậy giao điểm với trục tung là A(0 ; 4).
+ Khi y = 0 thì –x2 + 4 = 0. Phương trình có hai nghiệm x = 2 hoặc x = –2.
Vậy Parabol cắt trục hoành tại hai điểm B(2 ; 0) hoặc C(–2 ;0).
Bài 2 (trang 49 SGK Đại số 10):
Lời giải:
a) y = 3x2 – 4x + 1.
+ Tập xác định: R.
+ Đỉnh A(2/3 ; –1/3).
+ Trục đối xứng x = 2/3.
+ Giao điểm với Ox tại B(1/3 ; 0) và C(1 ; 0).
+ Giao điểm với Oy tại D(0 ; 1).
+ Bảng biến thiên:
+ Đồ thị hàm số :
b) y = –3x2 + 2x – 1.
+ Tập xác định: R
+ Đỉnh A(1/3 ; –2/3).
+ Trục đối xứng x = 1/3.
+ Đồ thị không giao với trục hoành.
+ Giao điểm với trục tung là B(0; –1).
Điểm đối xứng với B(0 ; –1) qua đường thẳng x = 1/3 là C(2/3 ; –1).
+ Bảng biến thiên:
+ Đồ thị hàm số :
c) y = 4x2 – 4x + 1.
+ Tập xác định : R
+ Đỉnh A(1/2; 0).
+ Trục đối xứng x = 1/2.
+ Giao điểm với trục hoành tại đỉnh A.
+ Giao điểm với trục tung B(0; 1).
Điểm đối xứng với B(0;1) qua đường thẳng x = 1/2 là C(1; 1).
+ Bảng biến thiên:
+ Đồ thị hàm số:
d) y = –x2 + 4x – 4.
+ Tập xác định: R
+ Đỉnh: I (2; 0)
+ Trục đối xứng: x = 2.
+ Giao điểm với trục hoành: A(2; 0).
+ Giao điểm với trục tung: B(0; –4).
Điểm đối xứng với điểm B(0; –4) qua đường thẳng x = 2 là C(4; –4).
+ Bảng biến thiên:
+ Đồ thị hàm số:
e) y = 2x2 + x + 1
+ Tập xác định: R
+ Đỉnh A(–1/4 ; 7/8).
+ Trục đối xứng x = –1/4.
+ Đồ thị không giao với trục hoành.
+ Giao điểm với trục tung B(0; 1).
Điểm đối xứng với B(0 ; 1) qua đường thẳng x = –1/4 là C(–1/2 ; 1)
+ Bảng biến thiên:
+ Đồ thị hàm số:
f) y = –x2 + x – 1
+ Tập xác định R
+ Đỉnh A(1/2 ; –3/4).
+ Trục đối xứng x = 1/2.
+ Đồ thị không giao với trục hoành.
+ Giao điểm với trục tung: B(0; –1).
Điểm đối xứng với B(0 ; –1) qua đường thẳng x = 1/2 là C(1 ; –1).
+ Bảng biến thiên:
+ Đồ thị hàm số :
Bài 3 (trang 49 SGK Đại số 10)
Lời giải:
a)
+ Parabol y = ax2 + bx + 2 đi qua M(1 ; 5)
⇒ 5 = a.12 + b.1 + 2 ⇒ a + b = 3 (1) .
+ Parabol y = ax2 + bx + 2 đi qua N(–2; 8)
⇒ 8 = a.( –2)2 + b.( –2) + 2 ⇒ 4a – 2b = 6 (2).
Từ (1) và (2) suy ra: a = 2; b = 1.
Vậy parabol cần tìm là y = 2x2 + x + 2.
b) + Parabol y = ax2 + bx + 2 có trục đối xứng x = –3/2
⇒ –b/2a = –3/2 ⇒ b = 3a (1)
+ Parabol y = ax2 + bx + 2 đi qua điểm A(3; –4)
⇒ –4 = a.32 + b.3 + 2 ⇒ 9a + 3b = –6 (2).
Thay b = 3a ở (1) vào biểu thức (2) ta được:
9a + 3.3a = –6 ⇒ 18a = –6 ⇒ a = –1/3 ⇒ b = –1.
Vậy parabol cần tìm là y = –1/3x2 – x + 2.
c) Parabol y = ax2 + bx + 2 có đỉnh I(2 ; –2), suy ra :
Từ (1) ⇒ b2 = 16.a2, thay vào (2) ta được 16a2 = 16a ⇒ a = 1 ⇒ b = –4.
Vậy parabol cần tìm là y = x2 – 4x + 2.
d) + Parabol y = ax2 + bx + 2 đi qua điểm B(–1 ; 6)
⇒ 6 = a.( –1)2 + b.( –1) + 2 ⇒ a = b + 4 (1)
+ Parabol y = ax2 + bx + 2 có tung độ của đỉnh là –1/4
Thay (1) vào (2) ta được: b2 = 9.(b + 4) ⇔ b2 – 9b – 36 = 0.
Phương trình có hai nghiệm b = 12 hoặc b = –3.
Với b = 12 thì a = 16.
Với b = –3 thì a = 1.
Vậy có hai parabol thỏa mãn là y = 16x2 + 12b + 2 và y = x2 – 3x + 2.
Bài 4 (trang 50 SGK Đại số 10)
Lời giải:
+ Parabol y = ax2 + bx + c đi qua điểm A (8; 0)
⇒ 0 = a.82 + b.8 + c ⇒ 64a + 8b + c = 0 (1).
+ Parabol y = ax2 + bx + c có đỉnh là I (6 ; –12) suy ra:
–b/2a = 6 ⇒ b = –12a (2).
–Δ/4a = –12 ⇒ Δ = 48a ⇒ b2 – 4ac = 48a (3) .
Thay (2) vào (1) ta có: 64a – 96a + c = 0 ⇒ c = 32a.
Thay b = –12a và c = 32a vào (3) ta được:
(–12a)2 – 4a.32a = 48a
⇒ 144a2 – 128a2 = 48a
⇒ 16a2 = 48a
⇒ a = 3 (vì a ≠ 0).
Từ a = 3 ⇒ b = –36 và c = 96.
Vậy a = 3; b = –36 và c = 96.
Trên đây là nội dung liên quan đến Hàm Số Bậc Hai – Toán 10 được dean2020.edu.vn đã tổng hợp được và chia sẻ đến các bạn. Hy vọng những kiến thức mà chúng tôi chia sẻ sẽ mang lại cho bạn những thông tin bổ ích nhé!
- Ảnh bìa đẹp – Tải ngay bộ sưu tập 99+ ảnh bìa đẹp nhất dành cho Facebook
- Tổng hợp các bài văn nghị luận về tác phẩm Ba Cống Hiến Vĩ Đại Của Các Mác – Ăng-ghen
- Tổng hợp +666 lời chúc Tết vui nhộn và đáng yêu
- Top 10 Cửa hàng Bán Mành tre chống nắng uy tín giá tốt nhất
- Những bài thơ hay về cha chân tình, sâu sắc và ý nghĩa