Hàm Số Bậc Hai – Toán 10

Bài viết dưới đây chúng ta sẽ cùng tìm hiểu nội dung Hàm Số Bậc Hai – Toán 10  và giải một số bài tập liên quan đến nội dung này để nắm chắc kiến thức nhé!

I. LÍ THUYẾT TRỌNG TÂM

Hàm số bậc hai được cho bởi công thức

y = ax2 + bx + c (a ≠ 0).

Tập xác định của hàm số này là D = R

A. ĐỒ THỊ CỦA HÀM SỐ BẬC HAI

Đồ thị của hàm số y = ax2 + bx + c (a ≠ 0) là một đường parabol có đỉnh là điểm I Hàm Số Bậc Hai - Toán 10 51 , có trục đối xứng là đường thẳng Hàm Số Bậc Hai - Toán 10 52 Parabol này quay bề lõm lên trên nếu a > 0, xuống dưới nếu a < 0.

Hàm Số Bậc Hai - Toán 10 53

Cách vẽ

Để vẽ parabol y = ax2 + bx + c (a≠0) ta thực hiện các bước

1) Xác định tọa độ của đỉnh  IHàm Số Bậc Hai - Toán 10 51

2) Vẽ trục đối xứng Hàm Số Bậc Hai - Toán 10 52

3) Xác định tọa độ các giao điểm của parabol với trục tung (điểm (0; c)) và trục hoành (nếu có).

Xác định thêm một số điểm thuộc đồ thị, chẳng hạn điểm đối xứng với điểm (0; c) qua trục đối xứng của parabol, để vẽ đồ thị chính xác hơn.

4) Vẽ parabol.

Khi vẽ parabol cần chú ý đến dấu của hệ số a (a > 0 bề lõm quay lên trên, a < 0 bề lõm quay xuống dưới).

B. CHIỀU BIẾN THIÊN CỦA HÀM SỐ BẬC HAI

Dựa vào đồ thị hàm số y = ax2 + bx + c (a≠0) ta có bảng biến thiên của nó trong hai trường hợp a > 0 và a < 0 như sau

Hàm Số Bậc Hai - Toán 10 56

Từ đó, ta có định lí dưới đây

Định lí

Nếu a < 0 thì hàm số y = ax2 + bx + c nghịch biến trên khoảng Hàm Số Bậc Hai - Toán 10 57  ; đồng biến trên khoảng Hàm Số Bậc Hai - Toán 10 58

Nếu a > 0 thì hàm số y = ax2 + bx + c đồng biến trên khoảng Hàm Số Bậc Hai - Toán 10 57 nghịch biến trên khoảng Hàm Số Bậc Hai - Toán 10 58

II. PHƯƠNG PHÁP GIẢI BÀI TẬP

Dạng 1: Xác định Hàm số bậc hai

Để xác định hàm số bậc hai ta là như sau

Gọi hàm số cần tìm là y = ax2 + bx + c, a ≠ 0. Căn cứ theo giả thiết bài toán để thiết lập và giải hệ phương trình với ẩn a, b, c từ đó suy ra hàm số cần tìm.

Xem thêm:  Vectơ Trong không gian - Toán 11

Dạng 2: Xét sự biến thiên và vẽ đồ thị hàm số bậc hai

Dựa vào phần lý thuyết đã nêu ở Lý thuyết trọng tâm.

Dạng 3: Đồ thị hàm số chứa dấu giá trị tuyệt đối và cho bởi nhiều công thức

Dựa vào phần lý thuyết đã nêu ở Lý thuyết trọng tâm.

Dạng 4: Ứng dụng của hàm số bậc hai trong chứng minh bất đẳng thức và tìm giá trị nhỏ nhất, lớn nhất

Dựa vào đồ thị (bảng biến thiên) của hàm số y = ax2 + bx + c, a ≠ 0 ta thấy nó đạt giá trị lớn nhất, nhỏ nhất trên [α; β] tại điểm x = α hoặc x = β hoặc x = -b/(2a).

III. GIẢI BÀI TẬP SÁCH GIÁO KHOA

Bài 1 (trang 49 SGK Đại số 10): 

Lời giải:

a) y = x2 – 3x + 2 có a = 1 ; b = –3 ; c = 2 ; Δ = b2 – 4ac = (–3)2 – 4.2.1 = 1.

+ Đỉnh của Parabol là Hàm Số Bậc Hai - Toán 10 61

+ Khi x = 0 thì y = 2. Vậy giao điểm với trục tung là A(0 ; 2).

+ Khi y = 0 thì x2 – 3x + 2 = 0. Phương trình có hai nghiệm x = 2 hoặc x = 1.

Vậy giao điểm với trục hoành là B(2 ; 0) và C(1 ; 0).

b) y = –2x2 + 4x – 3 có a = –2 ; b = 4 ; c = –3 ; Δ= b2 – 4ac = 42 – 4.( –3).( –2) = –8

+ Đỉnh của Parabol là (1 ; –1).

+ Khi x = 0 thì y = –3. Vậy giao điểm với trục tung là A(0 ; –3).

+ Khi y = 0 thì –2x2 + 4x – 3 = 0. Phương trình vô nghiệm.

Vậy Parabol không cắt trục hoành.

c) y = x2 – 2x có a = 1 ; b = –2 ; c = 0 ; Δ= b2 – 4ac = 4.

+ Đỉnh của Parabol là (1 ; –1).

+ Khi x = 0 thì y = 0. Vậy giao điểm với trục tung là O(0 ; 0).

+ Khi y = 0 thì x2 – 2x = 0. Phương trình có hai nghiệm x = 0 hoặc x = 2.

Vậy Parabol cắt trục hoành tại hai điểm O(0 ; 0) và A(2 ; 0).

d) y = –x2 + 4 có a = –1 ; b = 0 ; c = 4 ; Δ= b2 – 4ac = 0 – 4.( –1).4 = 16.

+ Đỉnh của Parabol là (0 ; 4).

+ Khi x = 0 thì y = 4. Vậy giao điểm với trục tung là A(0 ; 4).

Xem thêm:  Bảng Phân Bố Tần Số Và Tần Suất - Toán 10

+ Khi y = 0 thì –x2 + 4 = 0. Phương trình có hai nghiệm x = 2 hoặc x = –2.

Vậy Parabol cắt trục hoành tại hai điểm B(2 ; 0) hoặc C(–2 ;0).

Bài 2 (trang 49 SGK Đại số 10):

Lời giải:

a) y = 3x2 – 4x + 1.

+ Tập xác định: R.

+ Đỉnh A(2/3 ; –1/3).

+ Trục đối xứng x = 2/3.

+ Giao điểm với Ox tại B(1/3 ; 0) và C(1 ; 0).

+ Giao điểm với Oy tại D(0 ; 1).

+ Bảng biến thiên:

 

+ Đồ thị hàm số :

Hàm Số Bậc Hai - Toán 10 62

Hàm Số Bậc Hai - Toán 10 63

b) y = –3x2 + 2x – 1.

+ Tập xác định: R

+ Đỉnh A(1/3 ; –2/3).

+ Trục đối xứng x = 1/3.

+ Đồ thị không giao với trục hoành.

+ Giao điểm với trục tung là B(0; –1).

Điểm đối xứng với B(0 ; –1) qua đường thẳng x = 1/3 là C(2/3 ; –1).

+ Bảng biến thiên:

Hàm Số Bậc Hai - Toán 10 64

+ Đồ thị hàm số :

Hàm Số Bậc Hai - Toán 10 65

c) y = 4x2 – 4x + 1.

+ Tập xác định : R

+ Đỉnh A(1/2; 0).

+ Trục đối xứng x = 1/2.

+ Giao điểm với trục hoành tại đỉnh A.

+ Giao điểm với trục tung B(0; 1).

Điểm đối xứng với B(0;1) qua đường thẳng x = 1/2 là C(1; 1).

+ Bảng biến thiên:

Hàm Số Bậc Hai - Toán 10 66

+ Đồ thị hàm số:

Hàm Số Bậc Hai - Toán 10 67

d) y = –x2 + 4x – 4.

+ Tập xác định: R

+ Đỉnh: I (2; 0)

+ Trục đối xứng: x = 2.

+ Giao điểm với trục hoành: A(2; 0).

+ Giao điểm với trục tung: B(0; –4).

Điểm đối xứng với điểm B(0; –4) qua đường thẳng x = 2 là C(4; –4).

+ Bảng biến thiên:

Hàm Số Bậc Hai - Toán 10 68

+ Đồ thị hàm số:

Hàm Số Bậc Hai - Toán 10 69

e) y = 2x2 + x + 1

+ Tập xác định: R

+ Đỉnh A(–1/4 ; 7/8).

+ Trục đối xứng x = –1/4.

+ Đồ thị không giao với trục hoành.

+ Giao điểm với trục tung B(0; 1).

Điểm đối xứng với B(0 ; 1) qua đường thẳng x = –1/4 là C(–1/2 ; 1)

+ Bảng biến thiên:

Hàm Số Bậc Hai - Toán 10 70

+ Đồ thị hàm số:

Hàm Số Bậc Hai - Toán 10 71

f) y = –x2 + x – 1

+ Tập xác định R

+ Đỉnh A(1/2 ; –3/4).

+ Trục đối xứng x = 1/2.

+ Đồ thị không giao với trục hoành.

+ Giao điểm với trục tung: B(0; –1).

Điểm đối xứng với B(0 ; –1) qua đường thẳng x = 1/2 là C(1 ; –1).

+ Bảng biến thiên:

Hàm Số Bậc Hai - Toán 10 72

+ Đồ thị hàm số :

Hàm Số Bậc Hai - Toán 10 73

Bài 3 (trang 49 SGK Đại số 10)

Lời giải:

a)

+ Parabol y = ax2 + bx + 2 đi qua M(1 ; 5)

Xem thêm:  Bộ công thức số phức chi tiết và các dạng toán sô phức liên quan

⇒ 5 = a.12 + b.1 + 2 ⇒ a + b = 3 (1) .

+ Parabol y = ax2 + bx + 2 đi qua N(–2; 8)

⇒ 8 = a.( –2)2 + b.( –2) + 2 ⇒ 4a – 2b = 6 (2).

Từ (1) và (2) suy ra: a = 2; b = 1.

Vậy parabol cần tìm là y = 2x2 + x + 2.

b) + Parabol y = ax2 + bx + 2 có trục đối xứng x = –3/2

⇒ –b/2a = –3/2 ⇒ b = 3a (1)

+ Parabol y = ax2 + bx + 2 đi qua điểm A(3; –4)

⇒ –4 = a.32 + b.3 + 2 ⇒ 9a + 3b = –6 (2).

Thay b = 3a ở (1) vào biểu thức (2) ta được:

9a + 3.3a = –6 ⇒ 18a = –6 ⇒ a = –1/3 ⇒ b = –1.

Vậy parabol cần tìm là y = –1/3x2 – x + 2.

c) Parabol y = ax2 + bx + 2 có đỉnh I(2 ; –2), suy ra :

Hàm Số Bậc Hai - Toán 10 74

Từ (1) ⇒ b2 = 16.a2, thay vào (2) ta được 16a2 = 16a ⇒ a = 1 ⇒ b = –4.

Vậy parabol cần tìm là y = x2 – 4x + 2.

d) + Parabol y = ax2 + bx + 2 đi qua điểm B(–1 ; 6)

⇒ 6 = a.( –1)2 + b.( –1) + 2 ⇒ a = b + 4 (1)

+ Parabol y = ax2 + bx + 2 có tung độ của đỉnh là –1/4

Hàm Số Bậc Hai - Toán 10 75

Thay (1) vào (2) ta được: b2 = 9.(b + 4) ⇔ b2 – 9b – 36 = 0.

Phương trình có hai nghiệm b = 12 hoặc b = –3.

Với b = 12 thì a = 16.

Với b = –3 thì a = 1.

Vậy có hai parabol thỏa mãn là y = 16x2 + 12b + 2 và y = x2 – 3x + 2.

Bài 4 (trang 50 SGK Đại số 10)

Lời giải:

+ Parabol y = ax2 + bx + c đi qua điểm A (8; 0)

⇒ 0 = a.82 + b.8 + c ⇒ 64a + 8b + c = 0 (1).

+ Parabol y = ax2 + bx + c có đỉnh là I (6 ; –12) suy ra:

–b/2a = 6 ⇒ b = –12a (2).

–Δ/4a = –12 ⇒ Δ = 48a ⇒ b2 – 4ac = 48a (3) .

Thay (2) vào (1) ta có: 64a – 96a + c = 0 ⇒ c = 32a.

Thay b = –12a và c = 32a vào (3) ta được:

(–12a)2 – 4a.32a = 48a

⇒ 144a2 – 128a2 = 48a

⇒ 16a2 = 48a

⇒ a = 3 (vì a ≠ 0).

Từ a = 3 ⇒ b = –36 và c = 96.

Vậy a = 3; b = –36 và c = 96.

Trên đây là nội dung liên quan đến Hàm Số Bậc Hai – Toán 10 được dean2020.edu.vn đã tổng hợp được và chia sẻ đến các bạn. Hy vọng những kiến thức mà chúng tôi chia sẻ sẽ mang lại cho bạn những thông tin bổ ích nhé!

[Total:    Average: /5]

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *