Nhị Thức Niu-tơn – Toán 11

Để học tốt Đại 11, phần dưới giải các bài tập sách giáo khoa Toán 11 được biên soạn bám sát theo nội dung SGK Toán Đại Số 11. Dưới đây chúng ta sẽ cùng tìm hiểu nội dung Nhị Thức Niu-tơn – Toán 11 và giải một số bài tập liên quan đến nội dung này để nắm chắc kiến thức nhé!

I. TÓM TẮT LÝ THUYẾT

1. Công thức nhị thức Niu-tơn

(a + b)n = Cnan + Cn1an – 1b + … + Cnkan – kbk + … + Cnn-1abn-1 + Cnnbn (1)

2. Hệ quả

– Với a = b = 1, ta có: 2n = Cn + Cn1 + … + Cnn.

– Với a = 1; b = –1, ta có: 0 = Cn – Cn1 + … + (–1)kCnk + … + (–1)Cnn.

3. Chú ý:

Trong biểu thức ở vế phải của công thức (1):

-Số các hạng tử là n + 1;

– Các hạng tử có số mũ của a giảm dần từ n đến 0, số mũ của b tăng dần từ 0 đến n, nhưng tổng các số mũ của a và b trong mỗi hạng tử luôn bằng n (quy ước a = b = 1);

– Các hệ số của mỗi hạng tử cách đều hai hạng tử đầu và cuối thì bằng nhau.

Xem thêm:  Công thức tính thể tích hình lập phương, hình hộp chữ nhật, hình cầu, hình nón, hình trụ tròn...

II. Giải Bài Tập SGK

Bài 1 (trang 57 SGK Đại số 11):

Viết khai triển theo công thức nhị thức Niu – tơn:

Pasted into Nhị Thúc Niu ton Toan 11

Lời giải:

Pasted into Nhị Thúc Niu ton Toan 11 1 1

Pasted into Nhị Thúc Niu ton Toan 11 1 2

Pasted into Nhị Thúc Niu ton Toan 11 1 3

Bài 2 (trang 58 SGK Đại số 11):

Tìm hệ số của x3 trong khai triển của biểu thức : Pasted into Nhị Thúc Niu ton Toan 11 1 5

Lời giải:

+ Số hạng tổng quát của khai triển Pasted into Nhị Thúc Niu ton Toan 11 1 5 là:

Pasted into Nhị Thúc Niu ton Toan 11 1 6

+ x3 ứng với 6 – 3k = 3 ⇔ k = 1.

Vậy hệ số của x3 là: Pasted into Nhị Thúc Niu ton Toan 11 1 7

Bài 3 (trang 58 SGK Đại số 11):

Biết hệ số của x2 trong khai triển của (1 – 3x)n là 90. Tìm n.

Lời giải:

+ Số hạng tổng quát của khai triển (1 – 3x)n là:

Pasted into Nhị Thúc Niu ton Toan 11 1 8

+ Số hạng chứa x2 ứng với k = 2.

Hệ số của x2 là 90 nên ta có:

Pasted into Nhị Thúc Niu ton Toan 11 1 9

Vậy n = 5.

Bài 4 (trang 58 SGK Đại số 11):

Tìm số hạng không chứa x trong khai triển của Pasted into Nhị Thúc Niu ton Toan 11 1 10

Lời giải:

+ Số hạng tổng quát trong khai triển Pasted into Nhị Thúc Niu ton Toan 11 1 10 là:

Pasted into Nhị Thúc Niu ton Toan 11 1 11

+ Số hạng không chứa x tương ứng với 24 – 4k = 0 ⇔ k = 6.

Vậy số hạng không chứa x trong khai triển đã cho là: Pasted into Nhị Thúc Niu ton Toan 11 1 12

Bài 5 (trang 58 SGK Đại số 11):

Tìm khai triển biểu thức (3x – 4)17 thành đa thức, hãy tính tổng các hệ số của đa thức nhận được.

Lời giải:

Pasted into Nhị Thúc Niu ton Toan 11 1 13

Đặt S là tổng các hệ số của đa thức khai triển.

Ta có:

Pasted into Nhị Thúc Niu ton Toan 11 1 14

Vậy tổng các hệ số của đa thức khai triển bằng -1.

Bài 6 (trang 58 SGK Đại số 11):

Chứng minh rằng:

a) 1110 – 1 chia hết cho 100

b) 101100 – 1 chia hết cho 10.000

c) Pasted into Nhị Thúc Niu ton Toan 11 1 15 là một số nguyên

Xem thêm:  Tổng hợp các bài văn nghị luận về tác phẩm Phú Sông Bạch Đằng - Trương Hán Siêu

Lời giải:

a) Ta có; 1110 = (10+1)10 ( khai triển nhị thức Niu- tơn )

Pasted into Nhị Thúc Niu ton Toan 11 1 16

Do đó, 1110 -1 chia hết cho 100

b) Ta có: 10110 = (100+1)10 ( khai triển nhị thức Niu- tơn )

Pasted into Nhị Thúc Niu ton Toan 11 1 17

Do đó, 10110 -1 chia hết cho 10000

Pasted into Nhị Thúc Niu ton Toan 11 1 18

Pasted into Nhị Thúc Niu ton Toan 11 1 19

Pasted into Nhị Thúc Niu ton Toan 11 1 20

Trên đây là nội dung liên quan đến Nhị Thức Niu-tơn – Toán 11 được dean2020.edu.vn đã tổng hợp được và chia sẻ đến các bạn. Hy vọng những kiến thức mà chúng tôi chia sẻ sẽ mang lại cho bạn những thông tin bổ ích nhé!

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *