Hai Đường Thẳng Chéo Nhau Và Hai Đường Thẳng Song Song – Toán 11

Để học tốt Hình Học 11, phần dưới giải các bài tập sách giáo khoa Toán 11 được biên soạn bám sát theo nội dung SGK Toán Đại Số 11. Dưới đây chúng ta sẽ cùng tìm hiểu nội dung Hai Đường Thẳng Chéo Nhau Và Hai Đường Thẳng Song Song – Toán 11 và giải một số bài tập liên quan đến nội dung này để nắm chắc kiến thức nhé!

I. Lý thuyết Hai đường thẳng chéo nhau và hai đường thẳng song song

1. Vị trí tương đối của hai đường thẳng phân biệt

Cho hai đường thẳng a và b. Căn cứ vào sự đồng phẳng và số điểm chung của hai đường thẳng ta có bốn trường hợp sau:

a. Hai đường thẳng song song: cùng nằm trong một mặt phẳng và không có điểm chung, tức là

Pasted into Hai Duòng Thảng Chéo Nhau Và Hai Duòng Thảng Song Song Toan 11

b. Hai đường thẳng cắt nhau: chỉ có một điểm chung.

a cắt b khi và chỉ khi a ⋂ b = I.

c. Hai đường thẳng trùng nhau: có hai điểm chung phân biệt.

a ⋂ b = {A, B} ⇔ A ≡ B

d. Hai đường thẳng chéo nhau: không cùng thuộc một mặt phẳng.

a chéo b khi và chỉ khi a, b không đồng phẳng.

Xem thêm:  Tổng hợp các bài văn nghị luận về tác phẩm Một Thời Đại Trong Thi Ca - Hoài Thanh

Pasted into Hai Duòng Thảng Chéo Nhau Và Hai Duòng Thảng Song Song Toan 11 1 1

a song song với b

Pasted into Hai Duòng Thảng Chéo Nhau Và Hai Duòng Thảng Song Song Toan 11 1 2

a cắt b tại giao điểm I

Pasted into Hai Duòng Thảng Chéo Nhau Và Hai Duòng Thảng Song Song Toan 11 1 3

a và b cắt nhau tại vô số điểm (trùng)

Pasted into Hai Duòng Thảng Chéo Nhau Và Hai Duòng Thảng Song Song Toan 11 1 4

a và b chéo nhau

2. Hai đường thẳng song song

Tính chất 1: Trong không gian, qua một điểm nằm ngoài một đường thẳng có một và chỉ một đường thẳng song song với đường thẳng đó.

Tính chất 2: Hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì song song với nhau.

Định lí: (về giao tuyến của hai mặt phẳng): Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy hoặc đồng quy hoặc đôi một song song.

Hệ quả: Nếu hai mặt phẳng lần lượt đi qua hai đường thẳng song song thì giao tuyến của chúng (nếu có) song song với hai đường thẳng đó (hoặc trùng với một trong hai đường thẳng đó).

II. Giải Bài Tập SGK

Bài 1 (trang 59 SGK Hình học 11):

Cho tứ diện ABCD. Gọi P, Q, R và S là bốn điểm lần lượt lấy trên bốn cạnh AB, BC, CD và DA. Chứng minh rằng nếu bốn điểm P, Q, R và S đồng phẳng thì:

a) Ba đường thẳng PQ, SR và AC hoặc song song hoặc đồng quy.

b) Ba đường thẳng PS, RQ và BD hoặc song song hoặc đồng quy.

Lời giải:

Pasted into Hai Duòng Thảng Chéo Nhau Và Hai Duòng Thảng Song Song Toan 11 1 5

a) Ta có:

PQ = (ABC) ∩ (PQRS)

RS = (PQRS) ∩ (ACD)

AC = (ABC) ∩ (ACD)

Vậy hoặc PQ, RS, AC đồng qui hoặc song song.

b) PS =(ABD) ∩ (PQRS)

Xem thêm:  Các Hệ Thức Lượng Trong Tam Giác Và Giải Tam Giác - Toán 10

RQ = (BCD) ∩ (PQRS)

BD = (ABD) ∩ (CBD)

Vậy PS, RQ, BD đồng quy hoặc song song.

Bài 2 (trang 59 SGK Hình học 11):

Cho tứ diện ABCD và ba điểm P, Q, R lần lượt lấy trên ba cạnh AB, CD, BC. Tìm giao điểm S của AD và mặt phẳng (PQR) trong hai trường hợp sau đây.

a) PR song song với AC;

b) PR cắt AC.

Lời giải:

a) PR // AC

Pasted into Hai Duòng Thảng Chéo Nhau Và Hai Duòng Thảng Song Song Toan 11 1 6

mp(PQR) và mp(ACD) lần lượt chứa hai đường thẳng song song PR // AC

⇒ (PQR) ∩ (ACD) = Qt là đường thẳng song song với AC và PR.

Gọi Qt ∩ AD = S

⇒ S = AD ∩ (PQR).

b) PR ∩ AC = I.

Pasted into Hai Duòng Thảng Chéo Nhau Và Hai Duòng Thảng Song Song Toan 11 1 7

Có : Q ∈ (ACD) ∩ (PQR)

+ (ABC) ∩ (PQR) = PR.

+ (ACD) ∩ (ABC) = AC

+ (ACD) cắt (PQR)

⇒ PR; AC và giao tuyến của (ACD) và (PQR) đồng quy

Mà PR ∩ AC = I

⇒ I ∈ (ACD) ∩ (PQR).

⇒ (ACD) ∩ (PQR) = QI.

trong (ACD): QI ∩ AD = S chính là giao tuyến của (PQR) và AD.

Bài 3 (trang 60 SGK Hình học 11):

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AB, CD và G là trung điểm của đoạn MN.

a) Tìm giao điểm A’ của đường thẳng AG và mp(BCD).

b) Qua M kẻ đường thẳng Mx song song với AA’ và Mx cắt (BCD) tại M’.

c) Chứng minh GA = 3GA’

Lời giải:Pasted into Hai Duòng Thảng Chéo Nhau Và Hai Duòng Thảng Song Song Toan 11 1 8

a) Có: MN ⊂ (ABN)

⇒ G ∈ (ABN)

⇒ AG ⊂ (ABN).

Trong (ABN), gọi A’ = AG ∩ BN.

Xem thêm:  Tổng hợp các bài văn nghị luận về tác phẩm Bài Thơ Số 28 - R. Ta-go

⇒ A’ ∈ BN ⊂ (BCD)

⇒ A’ = AG ∩ (BCD).

b) + Mx // AA’ ⊂ (ABN) ; M ∈ (ABN)

⇒ Mx ⊂ (ABN).

M’ = Mx ∩ (BCD)

⇒ M’ nằm trên giao tuyến của (ABN) và (BCD) chính là đường thẳng BN.

⇒ B; M’; A’ thẳng hàng.

Pasted into Hai Duòng Thảng Chéo Nhau Và Hai Duòng Thảng Song Song Toan 11 1 9

⇒ BM’ = M’A’ = A’N.

c) Áp dụng chứng minh câu b ta có:

ΔMM’N có: MM’ = 2.GA’

ΔBAA’ có: AA’ = 2.MM’

⇒ AA’ = 4.GA’

⇒ GA = 3.GA’.

Trên đây là nội dung liên quan đến Hai Đường Thẳng Chéo Nhau Và Hai Đường Thẳng Song Song – Toán 11 được dean2020.edu.vn đã tổng hợp được và chia sẻ đến các bạn. Hy vọng những kiến thức mà chúng tôi chia sẻ sẽ mang lại cho bạn những thông tin bổ ích nhé!

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *